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Butterfly monitoring programs are popular and growing in
North America

Thousands of butterfly surveys are

conducted every year in North America...
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Yet these resources have received little
use by the scientific community

40 —&— Bird articles (US & Canada - CBC & BBS only)
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The number of articles from monitoring data in refereed journals
each year shows a lag in the development and analysis of butterfly
data, especially in North America.

WHY?? Data are little known, hard to
access and harder to use

PROJECT OBJECTIVES:

e Public access to monitoring data —
for scientists and the general
public

e Visualization tools for data
exploration

— Maps
— Population Trends

e Knowledgebase for North
American butterflies (US, Can)

— Life history, ecological and
morphological data

— Photos

— Parameter values from published
studies

e Analytical approaches for
invertebrate monitoring data



&) NABMN - Mozilla Firefox

S I°°'S|Tﬂe|'” e Goal 1: To include all North
= @ we,olfs,umd. edu/lries/NABMMindes:, html c | | - Starthlow )_'i w Am e ri Ca n b u tte rfI y m O n ito ri n g

||

projects in our network

The North American Butterily Monitoring Network e Goal 2: To standardize

protocols and data as much as
possible

HOME Goals Partners Projects Activities

NEWS UPDATE (July 2012): Workshop funded to bring European and North American butterfly monitoring programs
together!

e Goal 3: To develop or enhance
data management systems

e Goal 4: To build data
download, visualization, and
analytical tools

e Goal 5: To expand program
participation

Photo by Kerrith McKay

The North American Butterfly Monitoring Network brlngs tngether 0
volunteer monitoring programs to develop shared goals and e
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‘R AT OPPORTUNITIES FOR
inieen e e et | W Sl e ,@(i ' COLLABORATION:
managers, and educators can take advantage of the ces made " _? L=

locatiorfs for

possible through public participation in scientific research.

_L“:.:E;‘.L’mm:ﬂ”ra. i * Use of data for graduate or
' undergraduate research
projects

* Incorporating resources in
classroom exercises to
introduce “big data
approaches”

|




Tracking climate's impacts on butterflies
using data from citizen scientists

Leslie Ries, UMD, Biology and Socio-environmental Synthesis Center




C
P
C

How does climate impact butterflies?

nanging climates can enhance growth or challenge the
nysiological tolerances

nanging climates can shift the distribution or emergence

timing of interacting species
— host or nectar plants, natural enemies or mutualists

These dynamics can combine to shift range distributions or
impact population numbers

Climate vignettes
— Using mechanistic species distribution models to predict current

range limits:
e Sachem butterflies
e Monarch butterflies

— How does climate influence yearly fluctuations in monarch

numbers?

— Can climate induce phenological mismatches in migrating

monarchs and their host plants?



Correlative Species Distribution Models (SDMs)

e Correlative SDMS use known occurrences
to identify current ranges and infer
underlying environmental correlates

* Assuming that those correlates are driving
current ranges, researchers can predict

future range limits under different climate
scenarios

e BENEFITS:
* Long history of model development
* Availability of digitized museum
records and new sightings data allows
models to be applied for a diverse
group of organisms

* DRAWBACKS:
* Occurrence records lack information
on absences, abundances, or changes
through time
 Correlative approaches provide weak
evidence for causation
e There is usually no independent data
set to test model predictions
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Mechanistic SDMs make predictions based on
physiological or other mechanistic data

* Mechanistic models can be used to
translate environmental conditions (often
thermal constraints to growth or
energetics) into biologically relevant
metrics (survivorship or fecundity) and thus
predict distributions at large scales.
* BENEFITS:
* Specific mechanisms are identified a
priori
* Allows independent distribution data
to test predictions and identify specific
weaknesses and strengths of the
models
*DRAWBACKS:
* Lack of data for most organisms
 Short history of model development
 Lack of model transferability
between organisms
*“Canned” climate layers may not
include appropriate information




Goal: Predict current (and future)

distributions
 Take laboratory-measured temperature tolerances and how
they impact growth and survivorship

e (Obtain climate data to estimate how the climate
environment would translate into growth

e Use that to predict the range and also the predicted
abundance gradients within that range

Predicted number of

GDD calculations gentlaratipns




Modeling the distribution of the sachem
butterfly using mechanistic models

s Leslie Ries!, Jessica Turner!, Lisa
Crozier?, and Thomas Mueller!
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e The sachem butterfly (Atalopedes campestris) 100 km
recently expanded its range into Washington state.

e Winter temperatures had been rising in the area

Natural history notes: a common, open-area species that uses several grasses,
including common grasses such as Bermuda and crab grass



Her model focused on overwinter survival, but included
summer recruitment as well

Laboratory experiments
Exposed larvae to environment
mimicking January high/low temps:

Crozier 2003
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Sachem model projections

Model is based on field and lab experiments

N = o|T,(L, )|R[T(L, 1)].
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Comparing observed distributions to a mechanistic model
for the sachem butterfly (Atalopedes campestris)
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The model does a fairly good job at capturing the limiting factors of cold, and could be used
to predict range expansions (expanding northward) — but the model needs to be improved
before we could predict negative impacts of warming at the southern boundaries



Annual change in detection probablity (logit space)

One study shows the sachem increasing in MA

Breed et al. 2012. Nature Climate Change
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Monarchs have a complex migratory cycle that
makes tracking climate impacts challenging

Stage 3: Summer
expansion and-breeding

Stage 4.
Fall migration
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Monarchs are one of the most intensively
monitored species




A new partnership among multiple programs:

Monarch Net
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Monarch butterflies are one of the world's most famous insects, and in MonarchNet News:
Noxth America there are many citizen science programs where

volunteers collectinformation on various aspects ofits Life. The monarchs are on their breeding grounds now! Monitor their

eggs and larvae with the MLMFP, one of our Pa.rtner;‘.
The mission of monarchnetis to coordinate the integration of

monitoring data from these programs and to make itavailable on this The MonarchMNet Steering committee justhada very successful
meeting in Santa Barbara, CA in April. There was maich discussion
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aboutmonarch populations and the role of our new organization
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collaboration between monitoring programs, promote the use of the Scient‘ist(s)-of-the-Month'
data to answer scientifie questions, increase participation by citizen- .
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scientists in multiple programs and increase awareness of each

monitoring program.
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Growing Degree Days (GDD)

* Growing degree days are used to estimate the
amount of thermal energy available for growth.
*A minimum temperature at which growth can begin

25 4

Calculating daily degree days
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Building the distribution model

b Take laboratory-measured temperature ‘ T
tolerances and intersect with spatial b
patterns of heat accumulation throughout

eastern North America to predict number of ; A
generations that could be produced in \ "o e
spring and summer

Day1 Forecast Hi's T:é‘lf'i_‘ﬁqn
Sat 8-Sep-12 T

Predicted number of generations (1990-2009)

Spring (Mar-Apr) Summer (May-Aug)
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Testlng the distribution model

Compare the
distribution and relative
abundance of monarchs

generations predicted by
the model.

Observed distribution of monarch populations
Spring (Mar-Apr) - JN Summer (May-Aug)-NABA

0-0.5
0.5-1
1-1.5
152
2-2,5
M :s-5
M :-3.5
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Accounting for the potentially negative
impacts of excessive heat

e Lethal and sub-lethal temperature effects were tested in
a laboratory setting (Betalden et al., in prep)

e Larvae at various stages were exposed to potentially
lethal or sublethal temperatures for a different number
of days

— 38C(100.4F), 40C (104F), 42C (107.6F),
44C (111.2F) and a control (30C, 86F)

— First, Third, Fifth instars exposed
— Exposed for 1, 2, 4, or 6 days
— Nighttime temperatures were kept at 25C 1

e Larvae were reared to determine survivorship rates and
total development time (in degree days)




Results: Survivorship rates
(Betalden et al., in prep)
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Results: Development Time
(Betalden et al., in prep)
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* Development time increases as individuals are exposed

to higher temperatures for longer periods of time

* There is a treatment effect even for individuals exposed
for 1 day (suggesting sublethal effects may occur at lower
temperatures)



Preliminary examination: lethal and sub-lethal zones
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Preference and performance relative to mean
number of days >38C

Proportion Eggs
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Our ultimate goal: take into account
spatiotemporal patterns of temperature

Accumulated sub-

lethal degree days:
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* These are accumulated over the main summer growing season

(2 months)

* To truly test the impacts of sub-lethal and lethal temperatures,
we need to tie temperature events to survey dates



Relationship between development and
accumulated sub-lethal degree days
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Number of accumulated sub-lethal degree days

* Next steps

 Relate proportion of late instar larvae to sub-lethal
temperatures in the preceding two weeks

* Examine relationship between parasitism rates and sub-lethal
temperatures




Relationship between development and growing
degree days accumulated during the previous 7

days
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SDM Summary

¢ Laboratory studies of physiological tolerances were able to be
applied at continental scales and offered informative

predictions about current distributions
** For both monarchs and the sachem, intolerance to heat turned out to be an
important factor

*» This suggests that models of growing degree days could be improved by adjusting
for sub-lethal or lethal heat effects — this will require more laboratory work
describing tolerances to higher temperatures

+* Results from these models could be used to make a priori predictions about
responses to global climate change

¢ Our ability to use mechanistic models to explore how climate

impacts range is dependent on access to mechanistic data
+» Global, long-term climate data offers the ability to explore the influence of the
thermal landscape at many spatiotemporal scales

** We are limited by mechanistic data describing responses to different thermal
conditions, but these data are attainable

+» Citizen-science programs offer opportunities to test predictions at appropriate
spatiotemporal scales



Tracking climate’s impacts on population
fluctuations of the migratory monarch butterfly

SUMMER MONITORING DATA

llinnis Butterly Monitoring Metwork
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Zipkin et al. 2012, Global Change Biology (18): 3039-3049



Patterns based on simple state-wide
metrics aren’t informative
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Meaningful patterns emerge when factors are
evaluated in a multiple regression framework, taking
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Population summary

*»* Climate can explain at least some of the year-to-year
variability in population
+* Spring precipitation is one important driving factor

** Intermediate spring and summer temperatures seem to be optimal

** These results dovetail with another analysis that
shows that the amount of population growth in the
main northern recruitment zones is related to how
many butterflies arrive from the south in the late

spring
** Climate is one important factor impacting numbers

but probably doesn’t explain the decline observed in
Mexico



Could climate impact the phenological linkage
between milkweeds and monarchs

Data source: Journey North
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Arrival dates - 2001

Milkweed (n=172) Monarchs (n=403) Phenological mismatch
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Arrival mismatches are leading to at least
anecdotal incidents of egg loading

2002 2003 2004 2005 2006
March 28 Record




Take home messages

* Using models that link physiological tolerance data to
large-scale distributions is a powerful way to tease out
the complex interactions between climate and ecology

e Future mechanistic studies should focus on how
increased temperatures may impact development

 We could not possibly explore these questions in a
rigorous way without a data stream from large networks

of citizen scientists



Public access and visualization

e Access and visualization tools for NABA and hopefully regional
programs as well
— Maps and trend graphs
— Local lists of species (sorted by abundance)

Monarch (Danaus plexippus)

This butterfly has a unique migratory habit. The eastern population migrates to Mexico to
overwinter each year. The western population overwinters along the California coast. For
both of these populations, successive generations of butterflies expand their range during a
summer breeding season, and then return to overwintering sites each fall. A non-migratory
population lives in southern Florida. More details.
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